2019-07-08 13:35:07 2204浏览
今天千锋扣丁学堂Python培训老师给大家分享一篇关于Python绘制频率分布直方图示例的详细介绍,下面我们一起来看一下吧。
#-*- encoding=utf-8 -*-
import datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
zhfont1 = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc')
# 按照固定区间长度绘制频率分布直方图
# bins_interval 区间的长度
# margin 设定的左边和右边空留的大小
def probability_distribution(data, bins_interval=1, margin=1):
bins = range(min(data), max(data) + bins_interval - 1, bins_interval)
print(len(bins))
for i in range(0, len(bins)):
print(bins[i])
plt.xlim(min(data) - margin, max(data) + margin)
plt.title("probability-distribution")
plt.xlabel('Interval')
plt.ylabel('Probability')
plt.hist(x=data, bins=bins, histtype='bar', color=['r'])
plt.show()
#-*- encoding=utf-8 -*-
import datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
zhfont1 = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc'
# 自己给定区间,小于区间左端点和大于区间右端点的统一做处理,对于数据分布不均很的情况处理较友好
# bins 自己设定的区间数值列表
# margin 设定的左边和右边空留的大小
# label 右上方显示的图例文字
"""e
import numpy as np
data = np.random.normal(0, 1, 1000)
bins = np.arange(-5, 5, 0.1)
probability_distribution_extend(data=data, bins=bins)
"""
def probability_distribution_extend(data, bins, margin=1, label='Distribution'):
bins = sorted(bins)
length = len(bins)
intervals = np.zeros(length+1)
for value in data:
i = 0
while i < length and value >= bins[i]:
i += 1
intervals[i] += 1
intervals = intervals / float(len(data))
plt.xlim(min(bins) - margin, max(bins) + margin)
bins.insert(0, -999)
plt.title("probability-distribution")
plt.xlabel('Interval')
plt.ylabel('Probability')
plt.bar(bins, intervals, color=['r'], label=label)
plt.legend()
plt.show()
if __name__ == '__main__': data = [1,4,6,7,8,9,11,11,12,12,13,13,16,17,18,22,25] probability_distribution(data=data, bins_interval=5,margin=0)
效果如下图
【关注微信公众号获取更多学习资料】 【扫码进入Python全栈开发免费公开课】