千锋扣丁学堂Python培训之绘制频率分布直方图示例

2019-07-08 13:35:07 2171浏览

今天千锋扣丁学堂Python培训老师给大家分享一篇关于Python绘制频率分布直方图示例的详细介绍,下面我们一起来看一下吧。



项目中在前期经常要看下数据的分布情况,这对于探究数据规律非常有用。概率分布表示样本数据的模样,长的好不好看如果有图像展示出来就非常完美了,使用Python绘制频率分布直方图非常简洁,因为用的频次非常高,这里记录下来。还是Python大法好,代码简洁不拖沓~

如果数据取值的范围跨度不大,可以使用等宽区间来展示直方图,这也是最常见的一种;如果数据取值范围比较野,也可以自定义区间端点,绘制图像,下面分两种情况展示

1.区间长度相同绘制直方图

#-*- encoding=utf-8 -*-
import datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
zhfont1 = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc')
 
 
# 按照固定区间长度绘制频率分布直方图
# bins_interval 区间的长度
# margin    设定的左边和右边空留的大小
def probability_distribution(data, bins_interval=1, margin=1):
  bins = range(min(data), max(data) + bins_interval - 1, bins_interval)
  print(len(bins))
  for i in range(0, len(bins)):
    print(bins[i])
  plt.xlim(min(data) - margin, max(data) + margin)
  plt.title("probability-distribution")
  plt.xlabel('Interval')
  plt.ylabel('Probability')
  plt.hist(x=data, bins=bins, histtype='bar', color=['r'])
  plt.show()

2.区间长度不同绘制直方图

#-*- encoding=utf-8 -*-
import datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
zhfont1 = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc'
 
# 自己给定区间,小于区间左端点和大于区间右端点的统一做处理,对于数据分布不均很的情况处理较友好
# bins   自己设定的区间数值列表
# margin  设定的左边和右边空留的大小
# label   右上方显示的图例文字
"""e
  import numpy as np
  data = np.random.normal(0, 1, 1000)
  bins = np.arange(-5, 5, 0.1)
  probability_distribution_extend(data=data, bins=bins)
"""
def probability_distribution_extend(data, bins, margin=1, label='Distribution'):
  bins = sorted(bins)
  length = len(bins)
  intervals = np.zeros(length+1)
  for value in data:
    i = 0
    while i < length and value >= bins[i]:
      i += 1
    intervals[i] += 1
  intervals = intervals / float(len(data))
  plt.xlim(min(bins) - margin, max(bins) + margin)
  bins.insert(0, -999)
  plt.title("probability-distribution")
  plt.xlabel('Interval')
  plt.ylabel('Probability')
  plt.bar(bins, intervals, color=['r'], label=label)
  plt.legend()
  plt.show()

Case示例

if __name__ == '__main__':
  data = [1,4,6,7,8,9,11,11,12,12,13,13,16,17,18,22,25]
  probability_distribution(data=data, bins_interval=5,margin=0)

效果如下图



以上就是关于千锋扣丁学堂Python培训之绘制频率分布直方图示例的全部内容,希望能给大家一个参考,希望本文所述对大家Python程序设计有所帮助,想要了解更多关于Python开发方面内容的小伙伴,请关注扣丁学堂Python培训官网、微信等平台,扣丁学堂IT职业在线学习教育有专业的Python讲师为您指导,此外扣丁学堂老师精心推出的Python视频教程定能让你快速掌握Python从入门到精通开发实战技能。扣丁学堂Python技术交流群:279521237。


扣丁学堂微信公众号                          Python全栈开发爬虫人工智能机器学习数据分析免费公开课直播间


      【关注微信公众号获取更多学习资料】         【扫码进入Python全栈开发免费公开课】



查看更多关于"Python开发资讯"的相关文章>

标签: Python培训 Python视频教程 Python在线视频 Python学习视频 Python培训班

热门专区

暂无热门资讯

课程推荐

微信
微博
15311698296

全国免费咨询热线

邮箱:codingke@1000phone.com

官方群:148715490

北京千锋互联科技有限公司版权所有   北京市海淀区宝盛北里西区28号中关村智诚科创大厦4层
京ICP备12003911号-6   Copyright © 2013 - 2019

京公网安备 11010802030908号