千锋扣丁学堂Python培训之使用sklearn库实现各种分类算法

2019-07-04 13:44:06 1329浏览

今天千锋扣丁学堂Python培训老师给大家分享一篇关于介绍了Python使用sklearn库实现的各种分类算法,结合实例形式分析了Python使用sklearn库实现的KNN、SVM、LR、决策树、随机森林等算法实现技巧,下面我们一起来看一下吧。



KNN

from sklearn.neighbors import KNeighborsClassifier
import numpy as np
def KNN(X,y,XX):#X,y 分别为训练数据集的数据和标签,XX为测试数据
  model = KNeighborsClassifier(n_neighbors=10)#默认为5
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

SVM

from sklearn.svm import SVC
def SVM(X,y,XX):
  model = SVC(c=5.0)
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted


SVM Classifier using cross validation

def svm_cross_validation(train_x, train_y):
  from sklearn.grid_search import GridSearchCV
  from sklearn.svm import SVC
  model = SVC(kernel='rbf', probability=True)
  param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
  grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)
  grid_search.fit(train_x, train_y)
  best_parameters = grid_search.best_estimator_.get_params()
  for para, val in list(best_parameters.items()):
    print(para, val)
  model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
  model.fit(train_x, train_y)
  return model

LR

from sklearn.linear_model import LogisticRegression
def LR(X,y,XX):
  model = LogisticRegression()
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

决策树(CART)

from sklearn.tree import DecisionTreeClassifier
def CTRA(X,y,XX):
  model = DecisionTreeClassifier()
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

随机森林

from sklearn.ensemble import RandomForestClassifier
def CTRA(X,y,XX):
  model = RandomForestClassifier()
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

GBDT (Gradient Boosting Decision Tree)

from sklearn.ensemble import GradientBoostingClassifier
def CTRA(X,y,XX):
  model = GradientBoostingClassifier()
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

朴素贝叶斯:一个是基于高斯分布求概率,一个是基于多项式分布求概率,一个是基于伯努利分布求概率。

from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import MultinomialNB
from sklearn.naive_bayes import BernoulliNB
def GNB(X,y,XX):
  model =GaussianNB()
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted
def MNB(X,y,XX):
  model = MultinomialNB()
  model.fit(X,y)
  predicted = model.predict(XX
  return predicted
def BNB(X,y,XX):
  model = BernoulliNB()
  model.fit(X,y)
  predicted = model.predict(XX
  return predicted

以上就是关于千锋扣丁学堂Python培训之使用sklearn库实现各种分类算法的全部内容,希望本文所述对大家Python程序设计有所帮助,想要了解更多关于Python开发方面内容的小伙伴,请关注扣丁学堂Python培训官网、微信等平台,扣丁学堂IT职业在线学习教育有专业的Python讲师为您指导,此外扣丁学堂老师精心推出的Python视频教程定能让你快速掌握Python从入门到精通开发实战技能。扣丁学堂Python技术交流群:279521237。


扣丁学堂微信公众号                          Python全栈开发爬虫人工智能机器学习数据分析免费公开课直播间


      【关注微信公众号获取更多学习资料】         【扫码进入Python全栈开发免费公开课】



查看更多关于"Python开发资讯"的相关文章>

标签: Python培训 Python视频教程 Python在线视频 Python学习视频 Python培训班

热门专区

暂无热门资讯

课程推荐

微信
微博
15311698296

全国免费咨询热线

邮箱:codingke@1000phone.com

官方群:148715490

北京千锋互联科技有限公司版权所有   北京市海淀区宝盛北里西区28号中关村智诚科创大厦4层
京ICP备12003911号-6   Copyright © 2013 - 2019

京公网安备 11010802030908号