扣丁学堂大数据培训之相比Hadoop,如何看待Spark技术

2019-05-09 11:12:58 2566浏览

本篇文章扣丁学堂大数据培训小编给读者们分享一下相比Hadoop,如何看待Spark技术呢?对大数据开发感兴趣的小伙伴就随小编来了解一下吧,希望对小伙伴们有所帮助。



扣丁学堂大数据培训之相比Hadoop,如何看待Spark技术



什么是Spark?Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法。


Spark与Hadoop的对比


Spark的中间数据放到内存中,对于迭代运算效率更高。


Spark更适合于迭代运算比较多的ML和DM运算。因为在Spark里面,有RDD的抽象概念。



Spark比Hadoop更通用


Spark提供的数据集操作类型有很多种,不像Hadoop只提供了Map和Reduce两种操作。比如map, filter, flatMap, sample, groupByKey, reduceByKey, union, join, cogroup, mapValues, sort,partionBy等多种操作类型,Spark把这些操作称为Transformations。同时还提供Count, collect, reduce, lookup, save等多种actions操作。


这些多种多样的数据集操作类型,给给开发上层应用的用户提供了方便。各个处理节点之间的通信模型不再像Hadoop那样就是唯一的Data Shuffle一种模式。用户可以命名,物化,控制中间结果的存储、分区等。可以说编程模型比Hadoop更灵活。


不过由于RDD的特性,Spark不适用那种异步细粒度更新状态的应用,例如web服务的存储或者是增量的web爬虫和索引。就是对于那种增量修改的应用模型不适合。



错性


在分布式数据集计算时通过checkpoint来实现容错,而checkpoint有两种方式,一个是checkpoint data,一个是logging the updates。用户可以控制采用哪种方式来实现容错。



用性


Spark通过提供丰富的Scala, Java,Python API及交互式Shell来提高可用性。



Spark与Hadoop的结合


Spark可以直接对HDFS进行数据的读写,同样支持Spark on YARN。Spark可以与MapReduce运行于同集群中,共享存储资源与计算,数据仓库Shark实现上借用Hive,几乎与Hive完全兼容。



Spark的适用场景


Spark是基于内存的迭代计算框架,适用于需要多次操作特定数据集的应用场合。需要反复操作的次数越多,所需读取的数据量越大,受益越大,数据量小但是计算密集度较大的场合,受益就相对较小(大数据库架构中这是是否考虑使用Spark的重要因素)


由于RDD的特性,Spark不适用那种异步细粒度更新状态的应用,例如web服务的存储或者是增量的web爬虫和索引。就是对于那种增量修改的应用模型不适合。


总的来说Spark的适用面比较广泛且比较通用。



行模式:


本地模式

Standalone模式

Mesoes模式

yarn模式

Spark生态系统


Shark ( Hive on Spark): Shark基本上就是在Spark的框架基础上提供和Hive一样的H iveQL命令接口,为了最大程度的保持和Hive的兼容性,Shark使用了Hive的API来实现query Parsing和 Logic Plan generation,最后的PhysicalPlan execution阶段用Spark代替Hadoop MapReduce。通过配置Shark参数,Shark可以自动在内存中缓存特定的RDD,实现数据重用,进而加快特定数据集的检索。同时,Shark通过UDF用户自定义函数实现特定的数据分析学习算法,使得SQL数据查询和运算分析能结合在一起,最大化RDD的重复使用。


Spark streaming: 构建在Spark上处理Stream数据的框架,基本的原理是将Stream数据分成小的时间片断(几秒),以类似batch批量处理的方式来处理这小部分数据。Spark Streaming构建在Spark上,一方面是因为Spark的低延迟执行引擎(100ms+)可以用于实时计算,另一方面相比基于Record的其它处理框架(如Storm),RDD数据集更容易做高效的容错处理。此外小批量处理的方式使得它可以同时兼容批量和实时数据处理的逻辑和算法。方便了一些需要历史数据和实时数据联合分析的特定应用场合。


Bagel: Pregel on Spark,可以用Spark进行图计算,这是个非常有用的小项目。Bagel自带了一个例子,实现了Google的PageRank算法。


最后想要了解更多关于大数据方面内容的小伙伴,请关注扣丁学堂大数据培训官网、微信等平台,扣丁学堂IT职业在线学习教育平台为您提供权威的大数据开发视频,大数据培训后的前景无限,行业薪资和未来的发展会越来越好的,扣丁学堂老师精心推出的大数据视频教程定能让你快速掌握大数据从入门到精通开发实战技能。扣丁学堂大数据学习群:209080834。



扣丁学堂微信公众号                          Python全栈开发爬虫人工智能机器学习数据分析免费公开课直播间


      【关注微信公众号获取更多学习资料】         【扫码进入Python全栈开发免费公开课】



查看更多关于“大数据培训资讯”的相关文章>

标签: 大数据培训 大数据视频教程 大数据分析培训 大数据学习视频 Hadoop生态圈

热门专区

暂无热门资讯

课程推荐

微信
微博
15311698296

全国免费咨询热线

邮箱:codingke@1000phone.com

官方群:148715490

北京千锋互联科技有限公司版权所有   北京市海淀区宝盛北里西区28号中关村智诚科创大厦4层
京ICP备12003911号-6   Copyright © 2013 - 2019

京公网安备 11010802030908号