2019-03-26 13:10:43 204浏览
今天扣丁学堂Python培训老师给大家分享一篇关于Python实现矩阵转置与矩阵相乘运算示例详解,并结合实例形式分析了Python针对矩阵进行转置与相乘运算的相关实现技巧与操作注意事项。
def transpose(M): # 初始化转置后的矩阵 result = [] # 获取转置前的行和列 row, col = shape(M) # 先对列进行循环 for i in range(col): # 外层循环的容器 item = [] # 在列循环的内部进行行的循环 for index in range(row): item.append(M[index][i]) result.append(item) return result
def transpose(M): # 直接使用zip解包成转置后的元组迭代器,再强转成list存入最终的list中 return [list(row) for row in zip(*M)]
my_zip = list(zip(['a', 'b', 'c'], [1, 2, 3])) print(my_zip) # [('a', 1), ('b', 2), ('c', 3)]
def matrixMultiply(A, B): # 获取A的行数和列数 A_row, A_col = shape(A) # 获取B的行数和列数 B_row, B_col = shape(B) # 不能运算情况的判断 if(A_col != B_row): raise ValueError # 最终的矩阵 result = [] # zip 解包后是转置后的元组,强转成list, 存入result中 BT = [list(row) for row in zip(*B)] # 开始做乘积运算 for A_index in range(A_row): # 用于记录新矩阵的每行元素 rowItem = [] for B_index in range(len(BT)): # num 用于累加 num = 0 for Br in range(len(BT[B_index])): num += A[A_index][Br] * BT[B_index][Br] # 累加完成后,将数据存入新矩阵的行中 rowItem.append(num) result.append(rowItem) return result
【关注微信公众号获取更多学习资料】 【扫码进入Python全栈开发免费公开课】